Copied to
clipboard

G = C2×He3.C32order 486 = 2·35

Direct product of C2 and He3.C32

direct product, metabelian, nilpotent (class 3), monomial, 3-elementary

Aliases: C2×He3.C32, (C3×C18)⋊2C32, He3.C35C6, (C6×He3).7C3, (C3×C6).10He3, (C3×C6).7C33, C3.13(C6×He3), C6.13(C3×He3), (C3×He3).20C6, He3.11(C3×C6), C33.15(C3×C6), (C2×He3).4C32, C32.10(C2×He3), C32.7(C32×C6), (C32×C6).14C32, (C6×3- 1+2)⋊8C3, 3- 1+24(C3×C6), (C3×3- 1+2)⋊15C6, (C2×3- 1+2)⋊4C32, (C3×C9)⋊6(C3×C6), (C2×He3.C3)⋊1C3, SmallGroup(486,216)

Series: Derived Chief Lower central Upper central

C1C32 — C2×He3.C32
C1C3C32C33C3×3- 1+2He3.C32 — C2×He3.C32
C1C3C32 — C2×He3.C32
C1C6C32×C6 — C2×He3.C32

Generators and relations for C2×He3.C32
 G = < a,b,c,d,e,f | a2=b3=c3=d3=f3=1, e3=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, dbd-1=bc-1, be=eb, bf=fb, cd=dc, fef-1=ce=ec, cf=fc, ede-1=bc-1d, df=fd >

Subgroups: 360 in 136 conjugacy classes, 66 normal (16 characteristic)
C1, C2, C3, C3, C6, C6, C9, C32, C32, C32, C18, C3×C6, C3×C6, C3×C6, C3×C9, C3×C9, He3, He3, 3- 1+2, 3- 1+2, C33, C33, C3×C18, C3×C18, C2×He3, C2×He3, C2×3- 1+2, C2×3- 1+2, C32×C6, C32×C6, He3.C3, C3×He3, C3×3- 1+2, C3×3- 1+2, C2×He3.C3, C6×He3, C6×3- 1+2, C6×3- 1+2, He3.C32, C2×He3.C32
Quotients: C1, C2, C3, C6, C32, C3×C6, He3, C33, C2×He3, C32×C6, C3×He3, C6×He3, He3.C32, C2×He3.C32

Smallest permutation representation of C2×He3.C32
On 54 points
Generators in S54
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 10)(8 11)(9 12)(19 43)(20 44)(21 45)(22 37)(23 38)(24 39)(25 40)(26 41)(27 42)(28 54)(29 46)(30 47)(31 48)(32 49)(33 50)(34 51)(35 52)(36 53)
(1 44 35)(2 45 36)(3 37 28)(4 38 29)(5 39 30)(6 40 31)(7 41 32)(8 42 33)(9 43 34)(10 26 49)(11 27 50)(12 19 51)(13 20 52)(14 21 53)(15 22 54)(16 23 46)(17 24 47)(18 25 48)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)
(2 45 30)(3 28 43)(5 39 33)(6 31 37)(8 42 36)(9 34 40)(11 27 53)(12 51 25)(14 21 47)(15 54 19)(17 24 50)(18 48 22)(20 23 26)(29 35 32)(38 41 44)(46 52 49)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(2 8 5)(3 6 9)(11 17 14)(12 15 18)(19 22 25)(21 27 24)(28 31 34)(30 36 33)(37 40 43)(39 45 42)(47 53 50)(48 51 54)

G:=sub<Sym(54)| (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,10)(8,11)(9,12)(19,43)(20,44)(21,45)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,54)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51)(35,52)(36,53), (1,44,35)(2,45,36)(3,37,28)(4,38,29)(5,39,30)(6,40,31)(7,41,32)(8,42,33)(9,43,34)(10,26,49)(11,27,50)(12,19,51)(13,20,52)(14,21,53)(15,22,54)(16,23,46)(17,24,47)(18,25,48), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (2,45,30)(3,28,43)(5,39,33)(6,31,37)(8,42,36)(9,34,40)(11,27,53)(12,51,25)(14,21,47)(15,54,19)(17,24,50)(18,48,22)(20,23,26)(29,35,32)(38,41,44)(46,52,49), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (2,8,5)(3,6,9)(11,17,14)(12,15,18)(19,22,25)(21,27,24)(28,31,34)(30,36,33)(37,40,43)(39,45,42)(47,53,50)(48,51,54)>;

G:=Group( (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,10)(8,11)(9,12)(19,43)(20,44)(21,45)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,54)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51)(35,52)(36,53), (1,44,35)(2,45,36)(3,37,28)(4,38,29)(5,39,30)(6,40,31)(7,41,32)(8,42,33)(9,43,34)(10,26,49)(11,27,50)(12,19,51)(13,20,52)(14,21,53)(15,22,54)(16,23,46)(17,24,47)(18,25,48), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (2,45,30)(3,28,43)(5,39,33)(6,31,37)(8,42,36)(9,34,40)(11,27,53)(12,51,25)(14,21,47)(15,54,19)(17,24,50)(18,48,22)(20,23,26)(29,35,32)(38,41,44)(46,52,49), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (2,8,5)(3,6,9)(11,17,14)(12,15,18)(19,22,25)(21,27,24)(28,31,34)(30,36,33)(37,40,43)(39,45,42)(47,53,50)(48,51,54) );

G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,10),(8,11),(9,12),(19,43),(20,44),(21,45),(22,37),(23,38),(24,39),(25,40),(26,41),(27,42),(28,54),(29,46),(30,47),(31,48),(32,49),(33,50),(34,51),(35,52),(36,53)], [(1,44,35),(2,45,36),(3,37,28),(4,38,29),(5,39,30),(6,40,31),(7,41,32),(8,42,33),(9,43,34),(10,26,49),(11,27,50),(12,19,51),(13,20,52),(14,21,53),(15,22,54),(16,23,46),(17,24,47),(18,25,48)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54)], [(2,45,30),(3,28,43),(5,39,33),(6,31,37),(8,42,36),(9,34,40),(11,27,53),(12,51,25),(14,21,47),(15,54,19),(17,24,50),(18,48,22),(20,23,26),(29,35,32),(38,41,44),(46,52,49)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(2,8,5),(3,6,9),(11,17,14),(12,15,18),(19,22,25),(21,27,24),(28,31,34),(30,36,33),(37,40,43),(39,45,42),(47,53,50),(48,51,54)]])

70 conjugacy classes

class 1  2 3A3B3C···3J3K···3P6A6B6C···6J6K···6P9A···9R18A···18R
order12333···33···3666···66···69···918···18
size11113···39···9113···39···99···99···9

70 irreducible representations

dim111111113399
type++
imageC1C2C3C3C3C6C6C6He3C2×He3He3.C32C2×He3.C32
kernelC2×He3.C32He3.C32C2×He3.C3C6×He3C6×3- 1+2He3.C3C3×He3C3×3- 1+2C3×C6C32C2C1
# reps11182618266622

Matrix representation of C2×He3.C32 in GL9(𝔽19)

1800000000
0180000000
0018000000
0001800000
0000180000
0000018000
0000001800
0000000180
0000000018
,
010000000
8126000000
007000000
8101160000
0018081000
0070120000
8100001160
0018000081
0070000120
,
700000000
070000000
007000000
000700000
000070000
000007000
000000700
000000070
000000007
,
100000000
0110000000
8117000000
7801104000
812018018000
01801118000
12110000790
01100008127
80000011180
,
000100000
8101160000
000071000
000000100
0000180010
000070001
700000000
8100180000
1127070000
,
100000000
010000000
001000000
000700000
810070000
1120007000
0000001100
7800000110
8100000011

G:=sub<GL(9,GF(19))| [18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18],[0,8,0,8,0,0,8,0,0,1,12,0,1,0,0,1,0,0,0,6,7,0,18,7,0,18,7,0,0,0,11,0,0,0,0,0,0,0,0,6,8,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,6,8,12,0,0,0,0,0,0,0,1,0],[7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7],[1,0,8,7,8,0,12,0,8,0,11,11,8,12,18,11,11,0,0,0,7,0,0,0,0,0,0,0,0,0,11,18,1,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,4,18,8,0,0,0,0,0,0,0,0,0,7,8,11,0,0,0,0,0,0,9,12,18,0,0,0,0,0,0,0,7,0],[0,8,0,0,0,0,7,8,1,0,1,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,7,1,11,0,0,0,0,0,0,0,0,6,7,0,18,7,0,18,7,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0],[1,0,0,0,8,1,0,7,8,0,1,0,0,1,12,0,8,1,0,0,1,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,11] >;

C2×He3.C32 in GAP, Magma, Sage, TeX

C_2\times {\rm He}_3.C_3^2
% in TeX

G:=Group("C2xHe3.C3^2");
// GroupNames label

G:=SmallGroup(486,216);
// by ID

G=gap.SmallGroup(486,216);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,548,500,735,3250]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=f^3=1,e^3=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,d*b*d^-1=b*c^-1,b*e=e*b,b*f=f*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,e*d*e^-1=b*c^-1*d,d*f=f*d>;
// generators/relations

׿
×
𝔽